
Iterative Turbo Decoder Analysis Based on Gaussian Density Evolution

Dariush Divsalar, Sam Dolinar, and Fabrizio Pollara
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

e-mail: {dariush,sam,fabrizio}@shannon.jpl.nasa.gov

ABSTRACT nels was computed. Wiberg [3] in his dissertation has

W e model the density of extrinsic information in
iterative turbo decoders by Gaussian density func-
tions. This model is verified by experimental measure-
ments. We consider evolution of these density func-
tions through the iterative turbo decoder as a nonlinear
dynamical system with feedback. Iterative decoding of
turbo codes and of serially concatenated codes are an-
alyzed based on this method. Many mysteries of turbo
codes can be explained based on this analysis. For ex-
ample we can explain why certain codes converge better
with iterative decoding than more powerful codes which
are only suitable for max imum likelihood decoding. The
roles of systematic bits and of recursive convolutional
codes as constituents of turbo codes are explained based
on this analysis.

I. INTRODUCTION

Concatenated coding schemes consist of the combi-
nation of two or more simple constituent encoders and
interleavers. The parallel concatenation known as a
“turbo code” [l] has been shown to yield remarkable
coding gains close to the theoretical limits, yet admit-
ting a relatively simple iterative decoding technique.
Also, serial concatenation of interleaved codes [2] may
offer superior performance to parallel concatenation at
very low bit error rates. In both coding schemes, the
core of the iterative decoding structure is a soft-input
soft-output (SISO) a-posteriori probability (APP) mod-
ule [8].

The analysis of iterative decoders for concatenated
codes with short blocks is an unsolved problem. How-
ever for very large block sizes this analysis is possible
under certain assumptions. The asymptotic (as block
size goes to infinity) iterative decoding analysis can be
based on the method of density evolution proposed by
Richardson and Urbanke [4], see also [6], [9]. Using this
method, the capacity threshold for low density parity
check (LDPC) codes over binary input AWGN chan-

shown that the extrinsic information in iterative decod-
ing can be approximated by a Gaussian density func-
tion. El Gama1 [5] in his dissertation considered the
soft-input soft-output APP module in turbo decoders
as a signal-to-noise ratio (SNR) transformer, and also
suggested a method for analyzing the overall turbo de-
coder. A method for analyzing the convergence of the
decoder similar to the one developed here, but based
on mutual information, was discussed in [13].

In this paper, we analyze turbo codes and serially
concatenated codes by approximating the density func-
tions for the extrinsics as Gaussian densities, and then
computing the mean and variance in the Gaussian den-
sity evolution. This approximation was used to obtain
a threshold on minimum bit signal-to-noise ratio &/No
for LDPC codes [6], based on using only the means of
Gaussian densities. First we determine the input and
output Gaussian means and variances of the individ-
ual SISO modules by simulation. Then, in Sections I11
and IV, we use these results to explain conditions of
turbo decoder convergence and to resolve other mys-
teries associated with turbo codes. At each iteration,
we compute input and output SNR’s for the two com-
ponent decoders. We also define, as in low noise am-
plifiers, a “noise figure” for turbo decoders. We argue
that if the noise figure of the iterative turbo decoder is
below 0 dB then the iterative decoder converges to the
correct codeword. Another method, for concatenated
codes with two component codes such as parallel and
serial turbo codes, is to plot the output SNR versus the
input SNR for one component decoder, and the input
SNR versus the output SNR for the other component
decoder. If the two curves do not cross, then the iter-
ative decoder converges. We used all the assumptions
made by Richardson and Urbanke for very large block
sizes (essentially when the block size and the number
of iterations go to infinity but the number of iterations
is much less than roughly the log of the block size cor-
responding to the girth of the graph representing the

This work was funded by the TMOD Technology Program and overall code, then the effects of cycles on performance
performed at the Jet Propulsion Laboratory, California Institute can be ignored).
of Technology under contract with the National Aeronautics and
Space Administration. Our method of modeling the density of the extrinsics

1

mailto:dariush,sam,fabrizio}@shannon.jpl.nasa.gov

using independent measurements of mean and variance
will result in a slightly pessimistic threshold since the
Gaussian density has the highest entropy for a given
variance. Slightly optimistic threshold results are ob-
tained if we impose density consistency as proposed by
Richardson et a1 [6]. Consistency under the Gauss-
sian assumption implies that the variance of the ex-
trinsic density function is twice its mean, and therefore
SNR=mean/2, given that all +Is are transmitted. This
makes the analysis easier since we only need to deter-
mine the mean of the extrinsic information. The mean
may be determined by simulation for any convolutional
code, or analytically for certain simple codes such as
2-state recursive convolutional codes.

A concentration theorem [12], [9] can be used to make
these results more rigorous. The concentration theorem
says that the average bit error probability concentrated
around the ensemble average of the bit error probabil-
ity over all possible graphs representing a given code,
or over all interleavers in the case of turbo codes, when
the block size goes to infinity. Such convergence is ex-
ponential in the block size, and, as the block size goes to
infinity, the graphs representing the code can be con-
sidered loop-free (locally tree-like). Such an assump-
tion for turbo codes was argued in [9], based on the
decay of dependencies of messages that are far apart
from each other on the trellis (similar to the concept of
finite-length traceback in Viterbi decoding).

11. THE GAUSSIAN DENSITY EVOLUTION MODEL
Consider a parallel turbo code as shown in Fig. 1.

The turbo decoder is based on two SISO modules as
shown in Fig. 2 and described in detail in [8].

.+! Encoder 1

to channel

I I

lnterleaver

to channel

Fig. 1. The structure of a turbo code.

The iterative decoder can be viewed as a nonlinear
dynamical feedback system. Extrinsic information mes-
sages are passed from one decoder to the other. We
computed the histogram of the extrinsic information at
the output of a SISO module. As shown in Fig. 3, a
Gaussian assumption is a good approximation for the

Fig. 2. Iterative turbo decoder for turbo codes.

0.025 1

extrinsic (sum-product)

n nnc, 1 I

Value of extrinsic

Fig. 3. The density function of extrinsic and its Gaussian
approximation

probability density function of the extrinsic informa-
tion.

With large interleavers, the extrinsic information
messages are independent and identically distributed,
given, say that the all-zero codeword is transmitted
(corresponding to, say, transmission of +l's on the
channel). Each message is modeled by a Gaussian ran-
dom variable with mean pi and variance a? at the ith
iteration, and the signal-to-noise ratio (SNR) of this
random variable is defined as SNR = p!/a?. If the
consistency assumption is used, then a! = 2pi.

Consider the input and output SNR's for each de-
coder at each iteration as shown in Fig. 4. These
are denoted SNRli,, SNRlout, SNR2in, SNR2,,t,
and they represent the SNR's associated with the ex-
trinsic information messages, not the SNR associated
with the channel observations. A nonzero Eb/No from
the channel enables decoder 1 to produce a nonzero
SNRlout for the output extrinsic information despite
starting with SNRli, = 0. For a given value of
&/No, the output SNR of each decoder is a nonlin-
ear function of its input SNR, denoted by GI for de-
coder l and Ga for decoder 2 as shown in Fig. 4. We
have SNRlout = G1(SNRlin, Eb/No) and SNR2,,t =

n

2

G2(SNR2in, Eb/No). Also, SNR2in = SNRl,,,, and
thus SNR2,,t = G2(G1(SNR1in, Eb/No), Eb/No).

111. A MODEL FOR DECODER CONVERGENCE

A “noise figure” F = SNRlin/SNR2,,t can be de-
fined for the turbo decoder at each iteration, as the
ratio of the input SNR of decoder 1 at the beginning
of the iteration, to the output SNR of decoder 2 at the
end of the iteration (which becomes the input SNR to
decoder 1 at the start of the next iteration). If the noise
figure is bounded lower than 1 for the entire range of
input SNR to decoder 1, then the SNR’s of the extrin-
sic information messages will increase without bound
(if the block size is infinite) and the turbo decoder will
converge to the correct codeword. These claims can be
justified by the results in [4], [6], [12], [9] on iterative
decoding decoding thresholds for LDPC codes.

Equivalently we can test the decoder convergence by
plotting the output SNR of decoder 1 versus its input
SNR, and the input SNR of decoder 2 versus its out-
put SNR, as shown in Fig. 5. In this figure we consid-
ered a rate 1/3 CCSDS turbo code [lo] consisting of
two 16-state systematic recursive convolutional codes.
Encoder 1 is rate 1/2, and encoder 2 is rate 1, as its
systematic bits are punctured to make the overall code
rate 1/3. The upper curve corresponds to the input-
output function GI for decoder 1, and the lower curve
corresponds to GT1 for decoder 2.

from channel Decoder 1

Fig. 4. Analysis of turbo decoding as a nonlinear dynamical
system with feedback using Gaussian density evolution.

Figure 5 also graphically shows the progress of the de-
coder’s iterations. The improvement in the SNR of the
extrinsic information, and the corresponding improve-
ment in the decoder’s bit error rate, follows a staircase
path reflecting at right angles between the curves cor-
responding to GI and G2. The steps in this staircase
are large when the bounding curves are far apart, and
small when they are close together. Where the curves
are closest together, the improvement in bit error rate
slows down, as many iterations are required to bore

through the narrow iterative decoding tunnel between
the curves. If the iterative decoder successfully passes
through the tunnel, convergence becomes very rapid as
the two curves get farther and farther apart at higher
SNRs. This means that as the block size goes to in-
finity the bit error rate goes to zero as the number of
iterations increases.

The initial displacement of the G1 curve for
SNRli, = 0 is dependent on the &/NO due to the chan-
nel observations. If we reduce &,/No from the value of
0.8 dB used in Fig. 5, then at some point the two curves
will just touch each other. That value of &/NO repre-
sents the iterative decoding threshold. The iterative de-
coding tunnel will be closed at the SNR where the two
curves touch, and the staircase path will not go past this
point. The bit error rate will settle to a nonzero value
determined by this finite SNR. Conversely, if Eb/No is
greater than this threshold the decoder converges and
the bit error rate goes to zero as the iterations increase.

8

7

6

5
a

K z
a 4

3

2

This point
changes
with EdN,

-m

-

I
L

0

I

Rate 113 CCSDS turbo code
E g o = 0.8 dB

1 2 3
S W n

4

Fig. 5. Iterations and convergence of a turbo decoder.

IV. SOME TURBO CODE MYSTERIES EXPLAINED
The “noise figure” analysis is more accurate, but the

graphical method using separate SNRout versus SNRin
for the constituent codes can help to explain many mys-
teries of turbo codes and provide more insight into the
design of good concatenated codes. For example, there
has not been an adequate explanation of why the sys-
tematic bits in turbo codes should be transmitted in
order for the decoder to converge. A maximum likeli-
hood decoder does not require these bits; indeed it is
possible to construct more powerful turbo codes with-

3

out transmission of the systematic bits. An explanation
for the role of the systematic bits can be surmised from
Fig. 6. Although the received bits corresponding to

a

6

-
a 4 a z fn

2

0

Rate 1/3
EdN, = 0.8 dB

/ /

Fig. 6. The role of systematic bits in turbo codes

parity bits have nonzero SNR, if we don't send the sys-
tematic bits the SNR of the extrinsic information at the
first iteration will be almost zero. This causes the curve
for Code 2 in Fig. 6 to intersect, near SNR = 0, the two
curves for Code 1 in the same figure that correspond
to nonsystematic constituent codes, octal (5/7) and oc-
tal (5/7,5/7). In these cases, there will be no conver-
gence to the correct codeword. However, if the system-
atic bits are transmitted, e.g., using the octal (1,5/7)
code, the curve for Code 1 moves upward and the SNR
of the extrinsics at the first iteration will be high. Now
the secondary question is why this is happening. Con-
sider a rate-1 recursive convolutional code (obtained by
puncturing the systematic bits of a rate-1/2 systematic
recursive convolutional code). If the highest degree of
the feed-forward polynomial is greater than or equal
to 1, then the input bit equals the modulo-2 sum of
nearly half of the output parity bits in the entire block.
In this case, it can be shown analytically that the SNR
of the input bits goes to zero as the block size goes to in-
finity. However if the highest degree of the feed-forward
polynomial is zero, then the input equals the modulo-
2 sum of only a few output parity bits, depending on
the highest degree of the feedback polynomial. This re-
sults in a nonzero SNR for the input bits at the first
iteration. An example of such a rate-1 recursive convo-
lutional code is an accumulator (differential encoder),
for which the feed-forward polynomial is 1 (highest de-

gree is zero). Another example is the rate-l
convolutional code. For example, consider a parallel
turbo code constructed from a differential encoder and
a rate-1 recursive 16-state convolutional code, as shown
in Fig. 7. For this code, there is a substantial nonzero

1

4

3

-
g 2
v)

1

0

EdNo = 0.8 dB

0 2 4 6 8 10

SNRin

Fig. 7. Example of not sending the systematic bits

SNRlout for decoder 1 at the end of the first itera-
tion. In such cases, the decoder will converge as long as
&/No is high enough to keep open a narrow iterative
decoding tunnel between the two curves.

There is a more detailed way to argue that a non-
trivial feed-forward polynomial causes the extrinsic in-
formation at the first iteration to be zero. Suppose
that the code's input bits {x,} and output bits (9,)
are related by xi xk-ipi = xi yk- iq i , corresponding to
a rate-1 recursive code with feed-forward polynomial
coefficients { p i } and feed-back polynomial coefficients
{ q i } . Assume without loss of generality that p j = 1 for
some j . Then, using the algebra introduced by Hage-
nauer [14], we have the following equation relating the
extrinsic information {X,} associated with the input
bits {x,} and the channel information {Xi} associated
with the coded bits {yk}:

tanh (X k + / 2) = n [t a n h (A,-i/2)Ipi n [t a n h (X",i/2)]4i.
i # j i

Unless pi = 0 for all i # j , the right-hand side is zero
at the first iteration because all of the initial extrinsics
{Xk-i} are zero. Thus, given an input SNR of zero,
the output SNR will also be zero. For a code with only
one nonzero feed-forward component, the iterations will
start with a nonzero SNR, because in that case there

4

are no tanh(.) factors on the right side of this equation
coming from zero-SNR extrinsics. By taking deriva-
tives of the equation above, we can establish the slope
of the SNR characteristic for the first iteration, and
use this slope as one of the tools for code design. One
may ask if this same conclusion is true when we use the
forward-backward sum-product algorithm on the trellis
representation of a rate-1 recursive convolutional code.
This is easy to show analytically for a rate-1 recursive
convolutional code with full-degree feedback and feed-
forward polynomials. If we start with uniform state
distributions at the beginning and end of a block for
the calculation of Q and p in the forward and back-
ward algorithm [7], [8], the distribution of Q and p re-
mains uniform. Due to the symmetry of edges for input
bits 0 and 1, the output extrinsic information will be
zero. If the feedback polynomial is not full-degree or if
the feedforward polynomial with at least two nonzero
components is not full-degree, then, by averaging the
transition matrix representing the trellis section, with
transition probabilities depending on the parity bits on
the edges leaving or entering the states, we will have a
nonuniform state distribution but with groups of two
or more states having the same value that again results
in extrinsics that approach zero on average.

We note that the above arguments do not hold for a
recursive convolutional code with rate less than one. In
this case the SNR of the extrinsics at the first iteration
is nonzero. However, if we compare, say, rate-1/2 sys-
tematic and nonsystematic recursive codes (the latter
obtained by puncturing the systematic bits of a rate-
1/3 convolutional encoder), the SNR of the extrinsics at
the first iteration for the systematic code is significantly
higher than for the nonsystematic code. However, the
nonsystematic code’s SNR characteristic has a higher
slope as the input SNR is increased. The basic mecha-
nism for all of these conclusions is that, when the feed-
forward polynomial has only one nonzero component,
then the sequence of channel observations gives direct
information about the sequence of states, and nonzero
extrinsic information can be inferred about each input
bit by applying the feedback polynomial coefficients to
the state sequence. On the other hand, when the feed-
forward polynomial has more than one nonzero compo-
nent, nothing can be inferred about the state sequence
from the channel observations unless there are more
channel bits than input bits, i.e., the code rate is less
than 1.

Next we explain the role of recursive convolutional
codes by considering what happens when the compo-

nent codes are nonrecursive. As shown in Fig. 8, in this
case the two curves will always cross each other. The
curves for codes 1 and 2 in this figure have the opposite
convexity from those seen in the previous figures for re-
cursive convolutional constituent codes. Iterations start
with a substantially nonzero SNRlout due to the chan-
nel information, but SNR improvements at successive
iterations are eventually trapped at the point where the
two curves cross. Further iterations will not improve
the bit error rate beyond an error floor determined by
this SNR.

4

Rate 114 PCCC

+ a a z fn

0 1 2 3

S W n

I

Fig. 8. Convergence of non-recursive encoders

For high enough SNR, the curves for recursive convo-
lutional codes approach a straight-line asymptote with
slope 1, whereas those for nonrecursive codes flatten out
to zero slope. One may wonder, for the case of recursive
codes, what is the mechanism by which highly reliable
extrinsic information keeps generating additional ex-
trinsic information, despite the fact that the weak chan-
nel symbols seem almost irrelevant compared to the
strong a priori information associated with the high-
SNR extrinsics? The explanation is the same as the
explanation for why recursive constituent codes make
stronger turbo codes than nonrecursive constituents,
namely that errors with information weight 1 corre-
spond to codewords with infinite coded weight. Thus,
even weak channel symbols, amassed over an infinite
block, are sufficient to rule out the possibility of a sin-
gle isolated information bit error. High-SNR extrinsic
information for a given bit i corresponds to a tiny a
priori probability of bit error ~ i . But since the channel
information rules out single errors, bit i cannot be in

5

error unless at least one other bit j is also wrong, with
tiny probability ~ j . Thus, the input extrinsic informa-
tion at bit i is log[(l - E ~) / E ;] , and bit i gets new extrin-
sic information that amounts to log[(l - & j) / & j] . If the
high-SNR extrinsics are uniform over the code block,
this implies that the SNR increases at a 1:l slope for
high SNR '.

Figure 9 elucidates the role of a primitive feedback
polynomial. In this figure we show the SNRout ver-
sus SNRin curves for two different rate-1/3 four-state
turbo codes. One code is the same code considered in
Fig. 6, for which the feedback polynomial is primitive
(octal 7). The other code uses a nonprimitive feedback
polynomial (octal 5). We see that for high SNR's the
two curves for the code using primitive feedback diverge
from each other much more rapidly than the curves for
the code with nonprimitive feedback. This produces
faster convergence when the iterations reach this region.
On the other hand, in the low SNR region the iterative
decoding tunnel is slightly narrower for the code with
primitive feedback than for the one with nonprimitive
feedback. This can cause the iterative decoding thresh-
old for the code with nonprimitive feedback to be lower
than that for the code with primitive feedback, even
though the opposite conclusion would be true if the de-
coders were maximum likelihood.

In Fig. 9, a difference in slopes corresponds to the
rate of convergence of the iterative decoder. A large
slope difference implies faster convergence. Primitive
feedbacks, e.g., octal (5/7) instead of octal (7/5) may
result in faster convergence above the decoding thresh-
old.

Figure 10 shows the role of different state complex-
ities. The SNRout versus SNRin curves are plotted
for rate-1/3 turbo codes with 4-state and 16-state con-
stituents. We see that the 16-state code (with poly-
nomials given by octal 33/31) has a clear advantage in
speed of convergence in the SNR region beyond the iter-
ative decoding tunnel. On the other hand, the sharper
curvature of the SNR curves for the individual 16-state
codes can narrow the iterative decoding tunnel and re-
quire a higher decoding threshold.

Figure 11 shows how a similar analysis method can be
applied when turbo codes are viewed as a serial concate-
nation of an outer repetition code with an inner recur-
sive convolutional code. The two concatenated codes
in this figure are rate-1/3 turbo codes with 4-state and

'For finite block size, the output SNR for large input SNR even-
tually saturates and its slope goes to zero. The saturation level
depends on type of code, block size, and channel E,/No.

6

5

4 - a
4 3
u)

2

1

0 Y 0 1 SNRin 2 3 4

Fin. 9. Rate 113 PCCC with two 4-state Codes (primitive
I

vs nonprimitive feedback)

. _

Rate 113
E@,=0.8 dB

8 - / (1,33/31) Code 1

I a a z
v)

i

Fig. 10. Comparison of rate 1/3 PCCCs with different state
complexities

8-state constituents. In each case, the outer code pro-
duces a set of systematic (uncoded) bits and two repe-
titions of these bits, which are then encoded by a rate-l
recursive convolutional inner code. The SNRout versus
SNRin characteristic of the outer repetition-2 code is
a simple straight line with slope 1, starting at a point
determined by the channel SNR of the systematic bits.
The SNR characteristic of the 4-state rate-1 inner code
(octal 5/7) is the same as that shown in Fig. 6, and
it suffers from the same problem of starting with an

6

4

3

-
a 2 a

v)
z

1

0

Rate 113 PCCC
EdN, = 0.85

11/13 /

1 2 3

SNRin

4

Fig. 11. Turbo codes viewed as serial concatenation of outer
repetition code with inner code

output SNR near 0. However, in this case, the nonzero
x-axis intercept of the outer code’s SNR characteris-
tic (due to the effect of information from the channel
on the systematic bits) is sufficient to allow an itera-
tive “staircase” to be followed in the direction of the
iterative decoding tunnel. Decoder convergence for the
8-state code (octal 11/13) is similar, though small per-
formance differences can be deduced due to the different
curvatures, as in Fig. 10.

Figure 12 illustrates the analysis method applied to a
serially concatenated code. In this example, the outer
and inner codes are identical 4-state rate-1/2 recur-
sive convolutional codes (octal 1, 5/7) , except that one-
fourth of the output symbols of the inner code are punc-
tured to make the overall code rate 1/3. Comparing
this figure to the previous figure, we see that the much
stronger (1, 5/7) outer code has an SNR characteristic
with much sharper curvature than the slope-1 straight
line for the simple repetition code in Fig. 11. This pro-
duces very fast convergence beyond the iterative decod-
ing tunnel, but at the same time the rapid initial rise
of the outer code’s SNR curve determines the minimum
&,/No (in this case, about 0.6 dB) required to keep the
inner code’s SNR curve from intersecting it. Despite
its initial sharp curvature, the outer code’s SNR curve
eventually approaches a straight-line asymptote. The
asymptotic slope of the SNRin versus SNRout curve for
this code, as plotted in the figure, is 1/4. In general,
this asymptotic slope will be no larger than l/(dmin-l),
where dmin is the minimum distance of the outer code.

4 -

3 .

&? 2 -
f

1 -
d

I
O t

0

rate ln two &states SCCC
rateln outer, rate 213 inner E A o = 1.0

Fig. 12. Example of a rate 1/3 serial turbo code

The argument for this is similar to that used earlier to
establish the 1:l asymptotic slope of the SNR curve for
a recursive convolutional inner code. For a given outer
code symbol to be incorrect, at least dmin - 1 additional
code symbols must also be incorrect to satisfy the code
constraint. If, from the extrinsic information, all code
symbols are independently incorrect with small prob-
ability E , then after applying the code constraint, the
probability that a given symbol is incorrect is reduced
to &in or lower. The reduction in this probability from
E to ~ ~ m i n corresponds to output extrinsic information
equal to &in - 1 times the input extrinsic information.
For some outer codes, the asymptotic slope will be dif-
ferent for the input-output SNR characteristics corre-
sponding to different code symbols. In general, it can
be argued that the reciprocal asymptotic slope of the
SNRin versus SNRout curve will equal the “minimum
extrinsic distance” of the corresponding code symbol.
For a linear (n, IC) code, the minimum extrinsic distance
can be defined as one less than the smallest weight of
any codeword containing a 1 in the location of the given
code symbol.

Finally, we show in Fig. 13 an example of how the
convergence properties of the overall decoder can be
determined from its noise figure. The code in this case is
a simple serially concatenated “repeat-and-accumulate
(RA)” code Ill], tested at two values of &,/NO just
above the iterative decoding threshold. The noise figure
in this case rises (with each iteration i) from an initial
value of 0 to a maximum just below 1, indicating that
decoder convergence is achieved.

7

1.0-

0.8.

0.6. f
;
G
0

0
0.4-

0.2.

0.0
0

Repeat 3

Accumulator

I observations
Channel

I F=max Fi
SNRi i

1 2 3

S N h n

Fig. 13. Noise figure for a rate 1/3 repeat-and-accumulate
(RA) code.

V. Low DENSITY PARITY CHECK CODES

The graphical analysis method also gives insights into
the design of low-density parity-check (LDPC) codes.
The method is the same as that of [4], except now
we interpret the set of “variable” nodes and the set
of “check” nodes in the LDPC decoder’s belief propa-
gation network as two constituents of a turbo-like de-
coder, with separate SNRout versus SNRin character-
istics. Since each variable node simply combines (in-
dependent) information about a given bit from sev-
eral incoming sources, the messages passed to and from
the variable nodes are like those passed to and from
a decoder for a repetition code. The corresponding
SNRin versus SNRout characteristic is a straight line
with slope l/(d, - l), where d , is the degree of vari-
able nodes, which is the number of connections to the
variable node. The SNR characteristic for the collec-
tion of check nodes is obtained by averaging a product
of tanh functions, as shown in [4]. Alternatively, this
SNR characteristic may be obtained by simulation.

Figure 14 shows the SNR characteristics for the vari-
able nodes and the check nodes of rate-l/2 LDPC codes
with degrees (2,4), (3,6), (4,8), and (5,lO). In this
figure, the SNR characteristics for the variable nodes
are straight lines with slopes 1, 1/2, 1/3, 1/4, ema-
nating from a nonzero SNR determined by the channel
Eb/No; in this case, Eb/No = 1.1 dB. The SNRout ver-
sus SNRin characteristics of the check nodes start from
SNR = 0, and increase more slowly with SNR when
the degree of the check nodes increases. In this exam-

SNRi (3.6) LDPC
\

S N R , (2.4) LDPC

SNR, c b d

0 1 4 5

Fig. 14. Iterative decoding threshold analysis for rate-1/2
LDPC codes.

ple, the (2,4), (4,8), and (5,lO) codes are not reliably
decodable at this &/NO because their respective SNR
characteristics intersect. However, the (3,6) code is just
at the limit of preserving a narrow iterative decoding
tunnel for reliable convergence.

Now we look at an example showing the improve-
ment obtainable by allowing variable nodes with mixed
degrees. First consider a rate-1/2 (4,8) regular LDPC
code. The iterative decoding threshold of this code is
1.6 dB [6]. Now consider another code with two equal-
size groups of variable nodes of degrees 2 and 6. All
of the check nodes are assumed to have degree 8. The
resulting Eb/No threshold for this code is 1.0 dB. This
gives 0.6 dB improvement over the (4,8) regular LDPC,
and the code rate is still 1/2. Figure 15 shows SNR
curves for the check nodes and the variable nodes. As
shown in the figure, the SNRout versus SNRin charac-
teristic of the check nodes degrades due to the mixture
input. However, the slope of the SNRin versus SNRout
characteristic of the mixture of variable nodes decreases
more, such that at Eb/No = 1.0 dB the two curves touch
each other. At the same Eb/No, the two SNR curves
for the (4,8) regular LDPC code cross each other.

Returning to Fig. 14, we see that the SNR curves
for the check nodes of different degrees all approach
parallel straight lines with 1:l slopes for high SNR.
The asymptote for a degree d , check node satisfies
the equation SNRout = SNRin - 21n(d, - 1). The
straight-line equation for a variable node of degree d ,
is SNRout = (d , - l)SNRin + 2REb/No. In the spe-
cial case of variable nodes with degree d , = 2, both

8

1 .o

0.0
2 3

SNRin
4

Fig. 15. Iterative decoding threshold analysis for rate-1/2
LDPC codes with mixture variable nodes.

slopes are equal. In this case the SNRout versus SNRin
asymptote for the check nodes will lie entirely above the
SNRin versus SNRout curve for the variable nodes only
if ~ R E ~ / N O > 21n(dc - I), or E ~ / N O > & In(dc - I),
since in this case the code rate R = 1 - 2/d,. This can
serve as a lower bound on the &/NO threshold. This
coincides with the result obtained by Wiberg [3], and
is a special case of the stability condition obtained by
Richardson et a1 [4] for LDPC codes.

REFERENCES
[l] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shan-

non Limit Error-Correcting Coding: Turbo Codes”, Proc.
1993 IEEE International Conference on Communications,
Geneva, Switzerland, pp. 1064-1070, May 1993.

[2] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Se-
rial Concatenation of Interleaved Codes: Performance Anal-
ysis, Design, and Iterative Decoding,” IEEE Transactions
on Information Theory, May 3, 1998.

[3] N. Wiberg “Codes and Decoding on General Graphs”, De-
partment of Electrical Engineering, Linkoping University, S-
581 83 Linkoping, Sweden, 1996.

[4] T. Richardson and R. Urbanke, The capacity of low density
parity check codes under message passing decoding, submit-
ted to IEEE trans. on Information Theory.

[5] H. El Gamal, On the theory and application of space-time
and graph based codes,” Ph.D. dissertation, 1999, University
of Maryland at College Park.

[6] S.-Y. Chung, T . Richardson, and R. Urbanke, “Analysis of
sum-product decoding of low-density parity-check codes us-
ing Gaussian approximation”, submitted to IEEE Transac-
tions on Information Theory.

[7] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal De-
coding of Linear Codes for Minimizing Symbol Error Rate,’’
IEEE Trans. Inform. Theory, vol. IT-20, pp. 284-287, 1974.

[8] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft
input soft output MAP module to decode parallel and serial
concatenated codes”, The Telecommunications and Data Ac-
quisition Progress Report 42-12’7, July-September 1996, JPL,
Pasadena, California, November 15, 1996.

[9] T. Richardson and R. Urbanke, “Analysis and Design of
Iterative Decoding Systems”, 1999 IMA Summer Program:
Codes Systems and Graphical Models, Minnesota, USA, Au-

[lo] CCSDS (Consultative Committee for Space Data
Systems),“Telemetry Channel Coding,” May 1999.
http://www.ccsds.org/documents/pdf/CCSDS-10i.0-B-4.pdf

[11] D. Divsalar, H. Jin, and R. J. McEliece,“ Coding Theorems
for ’Turbo-Like’ Codes,” 1998 Allerton Conference, Septem-
ber 23-25, 1998.

[12] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spiel-
man, “Analysis of low density codes and improved designs us-
ing irregular graphs”, proceedings of the 30th Annual ACM
Symposium on Theory of Computing, 1998. pp. 249-258.

[13] S. ten Brink, “Convergence of iterative decoding”, Electron-
ics Letters, vol. 35, no. 13, 24th June 1999.

[14] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding
of binary block and convolutional codes”, IEEE Trans. on
Information Theory, Vol. 42, No. 2, March 1996, pp. 429-
431.

gust 2-6, 1999

9

http://www.ccsds.org/documents/pdf/CCSDS-10i.0-B-4.pdf

